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ABSTRACT 

Second-order elliptic operators are transformed into second-order elliptic 
operators of a higher dimensionality acting on differences of functions. 
Applying the maximum principle to the resulting operators yields various a-pri- 
ori pointwise estimates to difference-quotients of solutions of elliptic dif- 
ferential, as well as finite-difference, equations. We derive Schauder estimates, 
estimates for equations with discontinuous coefficients, and other estimates. 

1. Simple example and introduction. In this paper a new method will be 

described for obtaining a-priori estimates for difference-quotients (and hence 

derivatives) of  solutions to second-order elliptic differential equations. Such 

estimates (e.g., the Schauder estimates [10, 11]), play a basic role in the existence 

theory for linear, and in particular for non-linear, elliptic equations. In the litera- 

ture (e.g. in [1], [2] and [7]) derivations of  these estimates are based on potential 

theory and involve tools such as transformations of  the independent variables and 

integral representations derived from the fundamental solution of  the Laplace 

equation. 

Our method is more elementary and can be illustrated by the following simple 

example: 

Let ¢(x) = ¢(xi,  x2, ..., xn) be a continuously twice-differentiable function on 

a bounded domain fl in the real n-space En, and let it satisfy the equation 

L¢(x) - - f ( x ) ,  where L is a second-order elliptic operator with constant coef- 

ficients and f(x) is a given function. Since L is elliptic, it satisfies the well-known 

maximum principle of E. Hopf  [91, and it is therefore easy (see Section 3 below) 

to estimate It ~b II = supx,~ I ¢(x) l in terms of IIf !1 and the boundary values 

of  ¢ .  Suppose, then, that we wish to estimate derivatives of ~b, say O¢(O)/dxi, 
in terms of II ¢ II, llfll and d, where 2d is the distance from 0 (the origin) to the 

boundary of  ~ .  Our approach will be to view the difference 
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~bl(Xl, X2, "" ,x, ;Yl)  - ½[{~(x1 "Jr" Yt, x2, "..,x,) - ~b(x I - y t ,  x2, "",x~)] 

as a function of  the n + 1 variables. This function is well-defined on the n + 1-di- 

mensional domain 

fh = {(xx,x2,...,x.;yOI x Z < d  z, 0 < y l  < d ) ,  

where x 2 = Xl 2 + x2 2 + ..- + x, 2 . Writing 

0 2 0 2 
L x = L -  va -~ l  2 + v dyi2,  (v > 0), 

we observe that, for sutficicnfly small v, this new operator is elliptic in the n + 1 

variables, and satisfies 

ILx+xl = IL+xl-< If] in f~,. 

Hence, introducing the "comparison function" 

1 1 
~1 = - ~ l [ f l l ( d y l -  Yl 2) "b ~-~1] ~b 11 { X2 q- Yl 2 q- C ( d y x -  yI2)}, 

where C is a constant large enough to satisfy 

2 v C >= Lx 2 2 + v throughout t) 

it is plain that 

and 

Llfft  < -Ilfll  ~ -[LI~ll in n, 

~1 _>-]ckl [ on the boundary 0f~1. 

Thus Lx(~t - ~bt) < 0 in f~l and ~1 - q~i --> 0 on 0•1, and hence, by the maxi- 

mum-principle, ~i  - ~bt _~ 0 throughout f~t. Similarly ~t  + ~bl => 0 and it fol- 

lows that [~bl[ < ~1. This implies in particular that 

½[~b(yt,0,... ,0 ) -  t~ ( -y l ,0 , . . . , 0 ) l  <_- f f l (0 , . . . ,0 ;y l )  

< 2~[[f[[dyx + [[~[l(Cdyt+y]). 

Dividing through by Yl we get an estimate for a difference-quotient of q~, which, 

upon letting Yl tend to zero, yields the desired estimate 

= IIf II + 7 II II. 

(Note that it is essential in our argument that the intersection of  a neighborhood 
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of the origin (x = 0, Yl = 0) with the hyperplane {Yl = 0} is included in af~ I. 

On this hyperplane ~b 1 vanishes; this enables us to construct a comparison-function 

~1 such that ~1 (0,0, . . . ,0;  Yl)/Yl is bounded.) 

In this illustration, as in general, our method for estimating difference-quotients 

is based solely on the maximum principle, applied either to the given elliptic 

operator L or to some higher dimensional, derived elliptic operator, such as LI 

in the example. 

This simple technique possesses the advantage of many elementary arguments, 

namely, a wider applicability; in fact, our method, unlike the alternative ap- 

proaches mentioned earlier, is applicable not only to elliptic differential equations, 

but also to elliptic finite-difference equations. The reader can easily check this 

in the above example, upon replacing L and L 1 by corresponding finite-difference 

operators. Indeed, second-order finite-difference operators, like their differential 

counterparts, satisfy a maximum pdndple (not always in its naive form, though; 

see rs]), and that is all we need for carrying our method through. 

The need for a-priori estimates to solutions of elliptic finite-difference equations 

was the main motivation for our work(Z). Such estimates can play a fundamental 

role in a convergence theory for numerical solutions to linear, and especially 

non-linear, elliptic equations. Furthermore, such finite-difference estimates can 

be used to demonstrate convergence of discrete approximations to a solution of 

a given elliptic differential equation without making any a-priori assumptions 
about existence and smoothness of solutions. This, in turn, may serve as an 

alternative approach to prove existence theorems for linear or non-linear elliptic 

differential equations. 

In spite of this primal interest in finite-difference equations, in the present paper 

we only apply our technique to differential equations. This, however, is merely 

done to save in notation and simplify our vocabulary. Actually, every theorem 

and every proof can be immediately adapted, line by line, to the finite difference 

case. (Only the explidt "comparison functions" used in Sections 6-9 may, when 

discretized, need some minor modifications.) 

In Section 2 we describe the higher-dimensional elliptic operator/Jq) to be used 

(1) In [4] we derived such estimates, but only for discrete operators whose main part is the 
Laplace operator. The method there was the "antisymmetrization" method, which is a very 
special case of the present "higher-dimensionality" method. For related results see also [3] and 
in particular [12], where interior estimates are established by means of discrete Fourier transforms 
and a discrete Sobolev inequality. The results in the present paper, however, are stronger, in the 
sense that we impose much weaker assumptions concerning the smoothness of the operators' 
coefficients. This weakness of assumptions is crucial for many applications. 
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in estimating q-order difference-quotients of  solutions to a general second-order 

elliptic equation. For equations with constant coefficients an (n + q)-dimensional 

operator would do (as in the above example, where q = 1), but for the general 

equation with variable coefficients L cq) is defined as an operator on C2(Eq, ÷1) ,  

i.e., it is (q + 1)n-dimensional. 

In Section 3 the maximum principle is reviewed. Applying this principle to 

/Jq), we derive in Section 4 a general theorem that assesses q-order differences 

of  solutions in terms of higher-dimensional comparison-functions. Various 

interior estimates, such as the interior Schauder  estimates (Section 8) and 

HSlder-type estimates for equations with discontinuous coefficients (Section 6), 

are shown to be direct corollaries of that general theorem. A special treatment 

for equations in two variables and discontinuous coefficients is given in Section 9. 

Other kinds of estimates are available by the same and similar methods. In a 

subsequent article we shall demonstrate the corresponding near- the-boundary 

estimates, again without resorting to coordinate-transformations or integral 

representations, thus keeping the results analogously obtainable in the finite- 

difference case• Our technique is also applicable to parabolic  equations. 

2. The basic identity. We first introduce some finite-difference notation. 

For any function F defined on some portion of  the real n-space En we define 

6(y) F(x)  = ½[F(x + y) - F(x  - y)] 

~(y)F(x)  = ½[F(x + y) + F(x  - y)] 

where x = (x 1, x2 , ' " ,x , )  and y = (Yl, Y2,'", Y~) s E~. Higher-order difference 

and mean operators are defined by 

~ ( r )  = 6,(yX, y 2, ..., yq) = tS(y')tS(y 2) ... 6( f l )  

and 
/z~(Y) = pq(yl, y2, ..., ya) __. #(yl)/t(y2 ) .../z(yq), 

where yt (y~, ~ i = y2 , . . . , y~)sE~  and Y =  (yl ,  y 2 , . . . , f l ) ~ E ~ .  The argument Y 

will often be omitted. We also set 6o --/z0 - 1. Mixed products operators are 

introduced as follows: 

~,,,,,,...,,_ (IT) = /zp(y ~1, y~, ..., y',) 
q - P  

and 

• ~q_ p(y~, + ,, y i , .  ~, . . . ,  yt~) 

I t , 1 2 , ' " , i p / ~ x  " i p  ÷ 1 " #~_p ~ r )  = t~p(y~,y ~2, - . . , f l ' )  • /z~_~(y ,y~'+~, .. ',y'~) 
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where (il, i2,...,ip; ip+t, ip+2,...,iq) is any combination of (1,2, . . . ,q) ,  i.e., a 

permutation for which i I < i2 < "- < ip and ip+l < ip+2 < "" < ie. The follow- 

ing lemma, which is a discrete analogue of Leibnitz' rule, is easily proved by 

induction. 

LEMMA 2.1. I f  F and G are two functions defined on E~ (or on any subset of 

E, such that ~q(Y)F(x) and 6¢(Y)G(x) are meaningful) then 

q 

q F "  6q{F G} = Z ~l,[ , G] 
p=O 

where 

f t q _ p  ~ .  ~ q _ p  __, 

this later sum being carried out over all (q) combinations 

1 < i l < i 2 < . . . < i  p < q. 

Let us now consider a uniformly elliptic operator L defined by 

n 

(2.1) L~(x) = Y~ au(x)~ij(x) + ~ ai(x)~bi(x ) -a(x)qb(x) 
i , j = l  i=1 

a2tk(x) and ~ i ( X )  - -  a~(X) Ihe  coefficients au(x ) = a f t ( x ) ,  a,(x) where ~ i j ( X )  = OXiOX ] d X  i 

and a(x) > 0 are all bounded functions such that 

(2.2) >= v 
l , j = l  

for all (~t, "", ~.) ~ E. and every x in a certain domain f~ _~ E. ,  v being a positive 

constant (the "constant of ellipticity") independent of either ~ or x .  Denoting 

¢(x, Y) = 6q( r)4,(x) , 

o0 a¢ 

it is easy to see that 

a~ 

ax, ayjk 

(2.3) 

k 

k,l 
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where 1 < k, l < q and k # I. Applying Lemma 2.1 and relations (2.3) we get 
the  following basic identity: 

6q( Y)Ldp(x) = ~ (~q{aij~ij} "-[- ~.~ 6~{a,qa,} + 6 q { -  adp} 

{( ) _ . boOy~y ~ 
i , j  k = l  k = l  

q 
k k 

k =Ll l* ~_ l a , j . ( c ~ jtlt ,,,y] + (1 -- Ckj)~Oy~j) + 

(2.4) + Z k.t . rdU.,, t) @y,y}) #q-2 aij ~ ~j~,.k., + (1 -- d k 
l < k < l ~ _ q  "~'J 

+ q Z ~/p['aij, qb~j 
p = 3  

+ ~ {#qa,'~x, + ~ #~_la . k  ~y, + ~ r/:['a,;(;b,-I} 
• k = l  p=2 

q 
- p q a ' ~  - ~ ,  q~[a;~]. 

p = l  

k ~ k l  k l  ~ k l  Here bi~ = b~(x,  Y ) ,  cij cij(x, Y) and d o du(x ,  Y) are arbitrary real func- 

tions, as yet at our disposal. We observe that (2.4) can be rewritten in the form 

(2.5) 6q{Lc~} = /Jq)(6~q~) + Lq_ l~b 

where 

q q 
q a " (2.6) Lq_,~b--- Y. ]g ~/,[ ,j, tku] + ]g ]~ ~/~[a,;~b,] 

| , j  p = 3  i p = 2  

q 

p--1 

We call Lq-1 the res idual  operator,  and notice that it contains derivatives and 

differences of  ~ of  orders not greater than q -  1. Our main operator L (~) 

is (q + 1)n-dimensional, i.e. it operates on functions defined on a certain part of 

E, q+x , the (q+l )n-d imensional  Euclidean space whose coordinates are 

X, y l ,  y 2 ,  " " ,  y ~ .  

It is interesting to remark that in deriving the basic identity (2.4) we made 

no use of  the ellipticity of  L. This identity therefore holds for any second-order 

differential operator. It also holds, with obvious modifications, for second-order 

difference operators. Moreover, an identity of  the form (2.5) is deafly obtainable 

for operators L of  arbitrary order. 
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Here, however, we restrict our attention to uniformly elliptic operators L, 

in which case, for purposes indicated in the introduction and more fully explained 

below, we like L (q) to be itself elliptic. To that end the above undetermined func- 

tions are usually(2) chosen as follows: 

c~ = dl~ - 1 (2.7) 

and 

(2.8) b k .~ ,j A~au+ Ayfy~/l y~l 2 

where 6 u is the Kronecker Delta, A k and A are non-negative functions to be spe- 

cified later (in terms of the coefficients aq and their differences) and 

ly~l ~ = ( yb  ~ + ... + (y~Y. 

Thus we can now write 

(2.9) 

where 

/JO = L~) +/J~) + L~q)+ L(4~) 

Z~') = a Z X; 
,o ,  , j  ly~l  x ayfOy,, 

f : l  k = l  1 :1  

+ 

+ 

q 02 

0 2 X X ~" 
,~k<~q ,a ~-2au) ayfayj 

YiYj ~ 02 ~ )  = Z Izqa,j-- A ~ k k 
, , ,  , o ~  l -~!  ax, axj 

and 

_ 

//p = E 1 (&a~) ~ q 
• k = l  1=1 ~ --/.lqa. 

(2) Unless otherwise explicitly stated. In Section 9, a different, more sophisticated choice 
is made. 



102 A. BRANDT Israel J. Math., 

Clearly, L~ ) is semi-elliptic, i.e. its matrix of coefficients, at any point, is positive 

semi-definite. Also /J~) is semi-elliptic, provided that 

q 

(2.10) qA + ~, A k < v, 
/ = 0  

where v is the positive quantity in (2.2). Thus, to have /Ja)[uniformly] 

elliptic, all we need is to make Lt2q)[uniformly] elliptic, e.g. by making its matrix 

of coefficients [uniformly] diagonally dominant, that is, by requiring 

q 

(2.11) Ao ½max Z E l  k - -  ]2q_ la i j  [ :> 17 
i k = l  j 

and 

I 
{ l ,_,a,jl + Z l  _la,jl} n, k = 1 ,2 , . . . ,q .  (2.12) Ak--½max ]~ ]~ k.l k 

/ 

where t/ is positive [and constant]. We have thus proved 

THEOREM 2.1. I f  A, Ao, A1 , " ' ,A  s satisfy (2.10-2.12) with [constant] positive 

~l, then 1_J ~) is [uniformly] elliptic. 

Note that we could most easily satisfy (2.10-2.12) by taking A = 0. This, 

however, would give us an elliptic operator/Jq) which would be useless for our 

purposes. It becomes apparent below that L~ q), which can be interpreted as 

q d2 
e~)= A k=l ~ d~-k 2 '  where rk = [y'l, 

is the most "useful" part of L (~). We thus wish to keep A as large, and 

Ao,Ax,. . . ,Aq as small, as possible. 

3. Maximum and comparison principles. We now state the well-known 

maximum principle for uniformly elliptic operators L. 

Maximum principle: I f  a function u satisfies Lu >= 0 in f~ and has a maximum 

at an interior point of f~ then u =- const. 

The proof of this theorem is quite elementary (see [6], page 326). Another 

way of stating it, which follows immediately by substituting u = + ¢ - ~, is 

the following 

Comparison principle: If IL¢I < -L~; in f~ and I¢1 =<- on the boundary 

of t2, then -<- ~ throughout f~. 
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The comparison principle gives us an effective tool to estimate the solution q~ 

of a Dirichlet problem for the equation Lt~ = f .  All we need to do is to construct 

a comparison function ~ which actually satisfies the above conditions. 

Our purpose is to show that this tool is also effective in estimating difference- 

quotients of ~b. 

REMARK: The maximum principle, and hence also the comparison principle' 

obviously hold true even if L is only "locally uniformly elliptic", i.e., if eachinte- 

t ier  point of f~ has a neighborhood where L is uniformly elliptic. Thus, even if the 

positive quantities, v in (2.2) and similarly ~/ in (2.11-2.12), are not constant, 

but continuous, the corresponding operators still satisfy the maximum and the 

comparison principles. 

4. Blueprint for es:imatlng differenee-quatients. Given a boundary value 

problem for the equation 

(4.1) Lc~(x) = f ( x ) ,  x ~ l'l, 

with L as defined in (2.1-2.2), we can write, by (2.5), 

(4.2) ~q)(aq~b) = ftq) 

where 

(4.3) f(q)(x, Y) = ¢Sq(Y)f(x) - L,i_t(x , Y)dp(x). 

Our blueprint for estimating difference-quotients of  ~b will be as follows: We 

first estimate max l¢ l, e.g., by using the comparison principle as described in 

the previous section; then we estimate first-order difference-quotients of q~; then 

second-order difference-quotients; etc. Thus, in the process of  assessing q-order 

difference-quotients we may assume that difference quotients of lower orders 

have already been estimated, and in particular, that an appropriate upper bound 

for If~q)[ has been obtained(a). We have thus enough information to construct 

a function i = if(x, yl ,  "", yq) for which 

(3) We adopt this procedure since it serves best to illustrate our technique. Alternatively, 
one could use simple calculus considerations (see Section2 in 17]) to estimate [fcq~ 1. This estimate 
would have the form 

fl f ( "  II --< II f II + ,  II <~ II. + c(,,q)II @ 11o, 
where ll$11k is some maximum norm of the k-order derivative of 4b, e is an arbitrary positive 
constant and C(e,q) is a constant depending only on the arguments shown. Since our method 
below essentially gi~es an estimate of the form 

It <~ II. ~ c, II ~, Ilo + c: 11 f "'11. 
one could, by selecting e smaller than C~ t, immediately derive the desired estimate of II ~ IIq 
in terms of Ilfll and 11 ~ I10, without having gone through any special analysis for orders less 
than q. 
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(4.4) 

and 

(4.5) 
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- m , f f  _>_ in a certain domain f~tq) ~ Eft +1 

> [tSqtk[ on the boundary Of~tq). 

Subject to certain conditions on the coefficients of L and an accordingly proper 

choice of A, Ao, AI, ..., ,44 (see Theorem 2.1) the (q + 1)n-dimensional operator 

/3 ~ is (locally uniformly) elliptic in f~tq~ and the comparison principle is therefore 

applicable to it, giving, via (4.2) and (4.4-4.5), the estimate 

(4.6) ]6~tk] < ~ throughout f~q~. 

Moreover, the domain f~tq~ is chosen so that its boundary dl) tq~ contains certain 

portions of the q subspaces { y l =  0}, . . . ,{yq= 0}. On these subspaces tSqq~ 

vanishes, and hence ff (whose boundary values should satisfy (4.5)) may vanish 

there too. Thus the comparison function i~ can be constructed so that its modulus 

is small in the vicinity of these subspaces, e.g., I ffl - 0(I y l l - ly21 ... I y l), 
and therefore (4.6) yields, as desired, an appraisal for q-order divided-differences 
(or derivatives) of ~b. 

In the present paper we carry out such a program to obtain various "interior 

estimates." 
An interior estimate to a difference-quotient of  ~b at some point P e fl is an 

estimate which depends on [1 tk [I = SUPx~n[ qS(x) I and on the distance d from P 

to the boundary dO, but is otherwise independent of the boundary conditions. 

With no loss of generality we may take the point P to be at the origin of En. 

We set 

(4.7) f~'~'= {(x,y ' , . . . ,y  ~) [ 0__< [xl<d o, O<[yk[<dl, k=l , . . . , q }  

to be the domain in Eft +1 on which 6q~b is to be compared with ft. We re- 

quire that the positive constants do and dl satisfy 

(4.8) do + qdl ~ d, 

which ensures that ~Sqq~ is indeed well-defined on fYq). Thus tq tq~ is a "holed"  

domain whose boundary can be desccribed as 

(4.9) aft t~) = B(o q~ LI B[q) U B2 (q) 

where 
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q 
Bto ~) = af~ t~) n k~__ 1 {yk = 0} 

q 

B] ~) = Of~ ~) o [ , . J  {lykl=da} 
k = l  

B~ ') = On ca) N {Ix[ = do}. 

Since we shall be looking for a comparison function ~ which depend only 

upon the magnitudes, [x [ and l ykl, of  its coordinates, we shall also employ the 

"reduced" (q + 1-dimensional) region 

(4.10) t ) t q l={ ( ro ,  r l , . . . , rq)  I 0 < r o < d o ;  0 < r k < d t ,  k = l , . - . , q }  

whose relation to ~tq) is evident. For any 
C2(fl t¢]) we denote 

au a2u 

Uk = -~k , UU -- Or~Ort ' 

function u = u(r o, r l , ' " ,  r e) in 

k, l = 0, 1, . . . ,q,  

and introduce the following "reduced" operator 

z[q] u V q 
~ Ukk 2q k=l 

+ Z ml(rk) Ukk + Uk - - U O 0 - - - U o  
k ffi 1 rk r o  

(4.11) + n 
q 

ml(r )luo l + .  m2(rk, r,) luk, I 
k = l  l~_k<l~_q 

1,) + (. +- ) (luool +  oV.O 
q 

k = l  

where v is the positive constant in (2.2) and the m's are bounds related to the 

coefficients of  L in the neighborhood of the origin: 

(4.12) m = sup [aiJ(x) 1, 
Ixl ~_do + qd~ 

(4.13/ mx(r ) = sup 16(y) a,j(xl], 
[xl ~_do+(q- I )dl 

lYl~r 
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(4.14) 
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m2(r, s) = sup 182(Y , z)au(x)I, 
Ixl <=do + (q -  2)a 
lYl_-<r, lz l~s 

(4.15) nq = sup la,(x) l 
Ixl <-ao+qd, 

(4.16) r~l(r ) = sup 16(Y)a,(x) l, 
Ixl _~ao + (q-  1)a, 

Ivl<-r 

each sup being also taken with respect to all 1 < i,j < n. The role of this 

" reduced"  operator L tq~ becomes clear in the following theorem. 

THEOREM 4.1. (Differences Comparison Theorem). Let c~ be a solution of  

the uniformly elliptic equation 

L~(x)=f (x ) ,  x e D ,  

and let do > 0 and dl > 0 be selected (i.e., l) (° and f~tql be defined) so that (4.8) 

is satisfied and also 

v 
(4.17) ml(dl) =< q(q + 1)n " 

Suppose there exists a non-negative function u = u(ro, rl , . .- ,r~) in 

C2(f~ Eql) for which 

(4.18) - ~u(Ixl ,  ly'l , . . . , I: l)  => If(~)(x, Y)l, (x, Y)~(~), 

(4.19) u(Ixl, ly' 1 , ,1:1)  >--l~(Y~(x)l, (x, r ) ~ ) u  B ' : .  

T h e n  

(4.20) ]o,(Y)~(x)] < u(]x[, ]yX[,...,left) throughout f~(q). 

REMARK 1. Notice that the comparison function u(I x [, le t  [, ..., ] y ~]) is 

allowed to vanish on B(o q). In applying this theorem we will always try to choose u 

so that it also fulfills a requirement of the form 

(4.21) u(0, r l , ' " ,  r~) < C r : z . . .  rq, C = constant, 

[or somewhat weaker requirements], so that (4.20) immediately yields an estimate 

for q-order difference-quotients (and hence derivatives), namely, 

l y ~ i : i ~ i : : ~ y  I = 
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[Or somewhat weaker estimates, e.g., an estimate for the H61der coefficients of  

the ( q -  1)-order derivatives of ~b at x = 0.] 

Rn~u, RI< 2. We tacitly assumed that (4.17) can be satisfied by selecting d: 

sufficiently small. In other words, we restricted ourselves to equations whose 

coefficients may be discontinuous, but with only small oscillations. 

Proof. We put 

2~(]y~l,...,ly~l) A - 2q 

n ~ m~(ly~l)+n(ly~l,...,ly~]), Ao = 2 k=l 

nq ml(ly~[) + n(lyll,...,ly~l), k =  1 ," ' ,q ,  A k - -  2 

where ~/ is an arbitrary positive function in C(fl tqJ) which is small enough to 

ensure A > 0. Owing to condition (4.17) these A's satisfy (2.10). It is also plain 

that they satisfy (2.11) and (2.12). Hence, by Theorem 2.1, L tq) is elliptic. 

Moreover, since !/ is positive and continuous, L cq) actually is locally-uniformly 

elliptic, and the comparison principle thus holds for it. As a comparison func- 

tion we take 

~(x, y l , . . . , y  q) = u([~ I, I y ~ I,..., [y~[) + e(d P-- [e 1 [P) 

where e is any pre-assigned positive constant and p > 2 is large enough to warrant 

(4.22) ~ " l y ' [  p _>_ l y W  ~" 

Dropping hereinafter the arguments ([ x ], ]yi ], "", l y~l) associated with u and its 

derivatives, we first observe that 

Ou y~ 
aye, = l y~l uk 

and 
OZu y~ y~ t$k~ [6, yk vk ) 

°yik°yJ -lYkl : lY' l  uk, + ly~l \ j - i ~ l  ~ uk 

for any 0 < k, I < q. (We put x = y°). Substituting these relations into (2.9) and 

putting the result alongside with (4.11), we see that(4) 

~,~)u < ~,q~u + ~I Tu 

(4) In fact, the reduced operationL tql has been devised precisely to meet this inequality. 
The small quantities ~ and e are mere technical auxiliaries to insure locally uniform ellipticity. 
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where Tu is some linear combination, with constant coefficients, of  Ukk and 

Uk/lyk[, (k = 0,1, ..', q). Hence, by choosing the function r/ small enough and 

using (4.22) and then (4.18) and (4.2), we get 

~q)~(x,Y) < IJ~]u + rlTu - lye[ P-2 ~ L %  

(4.23) < --  I-f('~( x ,  Y) I 

= - I ~*)~b(x, Y) [, (x, Y) E ~(~), 

where ~b(x, Y) - 6,(Y)¢(x). To compare ~, and ff on the boundary 8f~(~) we observe 

that by (4.19), I~1----~ on B? '  and Biq'. The same inequality also holds on 

B(o q), since ~ identically vanishes there whereas i~ is non-negative. Thus by (4.9), 

I~'1 =< ~ on a~c,~. 

We can therefore use the comparison principle (Section 3) to conclude from 

(4.23) that t~,l---~ throughout f~tq). Since this is true for any e > 0, we must 

actually have [~k I < u. Q.E.D. 

5. Notations and remarks. 

Denoting by d~ the distance from a point x e f~ to the boundary aft, and also 

denoting 

r k = ly k] 

r~, = min{lY~l, lY'[} 

rx~3 -- min{ly'l, ly~l, l y %  

we now compile a list of  the various constants (bounds) that will be used in the 

next sections, the 'sup's in this list are to be taken with respect to all x e f t ,  

x + y~I) ,  l < i < n  and l < j ~ n .  

Cx -- supl%(x)] 

C2 = sup d~" la,(x)l 
c~ = sup d~ ~ l a(x) l 

C4 = sup dfl" ]6(Y)ail(x)[ 
lyl • 

Cs = max 3,3 ~ , [ 3 n ( n - 1 ) C ,  18n~C'2 

3 
c~ = ~ + 1)c~-~ 
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C7 {4,4(©)": 4., ._.c.  = m a x  4( fl-~ ~--1~ f/''4(24C411/'~,~] ' B//(384n'l'C~'+ 1)v j 

c~ = supd~ ~ +" I a(y)a,(x)[ 
[Y]" 

c9 = supdx 2+" ['~(y) a(x)[ I.vl" 
[4, 48n(2n - 1)C, 1/~ 

= maxl 4( ~--qS1)~ ) ' Clo 
384n ~ C~ / 

_ 6n(n-1)  ( 4 )~' 3nC~ (2n+I)Ct+n~C2 
CI1 (~_ fl) - ~ - -  C4 + 4(1-ff)Clo + 2Clo z 

{ fl 20n 18(9n - 2)} _ nC, 90(3 - 1) )~(" _ fl) ]- Z g 
g ' 1 2  ( 1  + f l ) ~ "  m a x  - 

{ [180n.C8~11(1+.. [ 108,1.C8 )t/tt+,)} 
C12 = 5 .max 1, C12 l#t, ~ -T~- )V]  ' ~(-I~)(I"["]~)P 

K~ = sup I ~(x)[ 

K2 = supdx 2" l f (x) l  

K3 = 9K6 + 18[(2n + 1)C, + n~'C2]K'~ + 9C6Kt 

K ,  = 2C6K 3 + C6[3"n(n-1)C,C~-" + 6n ½ C~Cs]K' a 

K s = Cs-#K,, + C5K'1 

K 6 = 16K~ + 16nC~'K s + 32C'aK' 1 + 16C~'K2 

4 
K.r = -~-[K6 + 32(2n + 1)C~K~ + 32n½C2K'~] 

K8 

K~ 

K~o 

Ht 

H2 

tt3 

= max {4CTKs, 48n(n- 1)4"C4 re" / 
/~q~ + 11(,~ - /~ )vc , , :  "7 / 

_ 4096 [(4n + 2)C 1 + n~Cz]K~ 
v 

5000 [(4n + 2)C1 + n¢C2]K'~ ' 
v 

= sup d~, 2 +~ • !6(y)f(x) ! 

= 4 ~ + ~ [ H ; +  nC'~K~ + C~,K~ + C¢KI] 

{ 16 96C.  } 
= max 4CxoKs, fl(fl + 1)vCto ~ H2, fl(fl+ 1)~-K9 
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H 4 = 5 [H l + n  C4H 3+ nC~H 3 + CgH 3 + n c 8 K  5 

3 , 
+ -~C9K5 + C~K1] 

54 • 3 (t-~)/p H4 
H5 = ( 1 - a ) ( l + f l ) v  

50 480[(2n 4- 1 ) C  1 -Jr nl/2c2] 
H 6 = max 9 C12H3' fl(1 - -  fl2)1~C12 Kx0, 

120.5~(n÷Cs + 2nC4) K I 
fl(fl + 1)(~ - fl)vC12 ~ loj 

Primes on constants refer to additional differencing in the corresponding ex- 

pressions. For example 

C~ = sup d x • 16(y) al(x) 1, C~ = sup dx'  [ 62(Y)al(x) [, 

C~ = supd~ 1+~" 162(Yl'Y2) aa(x)], 
F12 ~ 

C~ = supdx 1+~ • ]63(yl,y2,ya)al(x)[ , etc. 
E123 °t 

Since such differencing only decreases the numerical value of the constant 

(C2 > C~ _-> C~, etc.), one can always omit primes in the above list without invali- 

dating any of the theorems below. 

REMARK 1. In a first reading of Sections 6-8 below it is advisable not to pay 

attention to the full particulars of the above constants. It is sufficient to cheek 

that "large enough" constants satisfy our claims. Indeed, for many theoretical 

applications, the only interesting features of these constants are (i) that they are 

finite; (ii) that each Cu depends solely on the coefficients au, a i and a; and (iii) 

that each Ku and each H u could be written in the form 

(5.x) K. = C K, + 
and 

(5.2) n~, = C~K 1 + C~K 2 + C]HI, 

respectively, where Cy are again positive constants depending only on the coef- 

ficients a~j , a t and a. 

For some applications, however, especially in numerical analysis, explicit 

knowledge of numerical values of upper-bounds is required. This explains the 

pains we took to compile the above list. We made, however, no attempt to find 

Israel J. Math., 
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anything like "the lowest possible bounds".  (Although best estimates are some- 

times computable. Cf. e.g. in 14], the remark on page 486). 

REMARK 2. If  the reader does wish to examine our estimates in detail, he 

should note that in the following sections we always set dl < do = d/(q + 2). 

As a result, if (x, yl,...,yq)~f~ (q) and ~ = x _ y _ ... _ y~ then d~ >= d/(q + 2). 

This implies the following relations: 

(5.3) l a,~()2)l <= c1 

(5.4) [a,(~) I _-__ q~_2 c2 

(5.5) la('r)[ < ( q d  2) 2 - -  C 3 

Similarly, ff (x, yl , . . . ,y~)e~ ~q) and we put )2 = x _+ yl +_ ... + yq-X and y = y~, 

then d~±y > d(/q + 2) and consequently 

(5.7) I a(Y)atJ()2) [ < [q + 2~.  ., 

(5.8) I a(y)a'()2) ] < eq + 2\1+" 

- lyl" ---< C9 

/q + 2\ 2+~ 
(5.10) < H1 lyl  : 

We shall not write down all the similar relations that apply to the primed con- 

stants, such as 

(5.4') l a(y)a,()2)l < q + 2Ci" 
= d 

For the m's introduced in (4.12-4.16) our relations (5.3, 5.4,5.7,5.8) yield 

q + 2 ~  
(5.11-12) m < C1, ~ < ~ t;2, 

[q  + 2V... 
(5.13-14) m,(r) < C I or m,(r) < (---d--} t~#r, 
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,, [q  + 2\ ~ , 
(5.15-16) m2(rl, r2) < C1 or m2(rl, r2) < ~ - d - - - )  C4r12, 

(5.17-18) ~ l ( r )  < q + 2C" or r~l(r) < Csr ~. 
~--- d = 

6. Corollaries: Interior estimates for ~ t - o r d e r  difference quotients. 
Substituting q -- 1, do = d [3 and 

u(ro, rl) -- g(r~) + K't ro 2/do 2 

in Theorem 4.1, and using (5.5, 5.6, 5.11,5.12), we readily get 

T~Om~M 6.1. Let q~ be a solution of the uniformly elliptic equation 

Ldp(x) = f (x ) ,  x ~ •. 

Let d be the distance f rom a point 0 (the origin, say) to Off and let 0 < d 1 < d [3 

be selected so that 

(6.1) ml(dt )  < 2n " 

Suppose further that there exists a non-negative function g(r) ~ C2([0, dt]  ) fo r  

which 

n } , n(n - 1)mt(r)g,(r) + n½ml(r)]g,(r ) 
+ -~ml(r)  g (r) + 2r 

< -- d -21( a, (0 < r < dl), 

Llg(r)=- { 2  

(6.2) 

and 

(6.3) 

Then 

(6.4) 

g(dt) >= K~. 

I (y)ff(o)l_<_g(lyl) for all lYl<d . 

The actual form of the function g depends on the circumstances. Let us first 

consider the case where the coefficients a~i may be discontinuous, but with only 

small oscillations. More precisely, we assume that for sufficiently small dl, 

(0 < dt < d/3), (6.1) holds and also, for some 0 < ~ < 1, 

d7 = ['(1 - ct)v - n(n - 2 + or)mr(d1) - 2n~r~l(dt) • dl]  - t >  O. 
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Writing 

g = max 

it is easy to check that 
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d" ' CKa} {d~K1, 2d12-~ 
~xd 2-~ 

g(r) = i~r~/d ~ 

satisfies (6.2) and (6.3) and as a result, by (6.4), 

d ~ . t 6 ( Y ) @ ( 0 ) I  ___ g .  
lyl  - 

This proves 

TrmOREM 6.2. 

ficients have small oscillations, namely, 

113 

I f  Lq~ = f in f~, where f is bounded, and if the principal coef- 

I v  2v } sup ]a~j(x) - aii(Y)] < rain n" n(n - 2) ' 
x,y ~i'l 

then dp is Hi~Ider-continuous in f~. If, moreover, all the principal coefficients are 

continuous at some point P e f~, then q~ at P is Hi~Ider-continuous with exponent 

arbitrarily close to 1. 

A stronger theorem for equations in two variables (n = 2) is proved in Section 9. 

Various other results are as easily obtained by employing other forms of the 

function g. For instance, taking 

g(r) = ~ d  log d , 

with/~ sufficiently large, there follows 

TI-~OR~I¢I 6.3. I f  Ldp -- f in f~, where f is bounded, and if the principal coef. 

ficients satisfy a condition of the form 

sup I tS(y) a~j(x) ] < ~ log 
x ±yeg l  

where ~ < v /n(n - 1) is a constant, then c~ is "almost differentiable", i.e., 

d" 16(--(0)]<=/~log ] Y ]. 

Next we consider the case where the principal coefficients a~j are HSlder- 

continuous for some given exponent 0 < a < 1, and we introduce an auxiliary 

exponent 0 < fl < a. We assume, in other words, that the constants C1, C2, Ca, 
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Ca, Cs, C6, C7 as well as the bounds K 1, K2, K3, K,, Ks, K6, KT, Ka, (see Section 

5) are all finite. 

THEOREM 6.4. I f  Ldp = f  in ~, where f is bounded and the principal coef- 

ficients of L are H61der-continuous, then, 

dx " I ¢5(y)q~(x) l< ly ] =Ks,  x+_ye fL  (6.5) 

In particular, 

(6.6) 

(7.1) 

(7.2) 

and 

Ks, x n. 
To prove this theorem one has simply to show, taking dl = d [C 5 and using 

(5.14, 5.17), that 
r , d ~ r -  r t+# 

.K, g(r) =d-~-i K1 + .  dtt+# 

satisfies (6.2-6.3). This implies (6.4) and hence (6.5). 

7. Corollaries: Interior estimates for second-order difference-quotients. 
In Theorem 6.4 the "differentiability" of ~b is stated. In fact, without additional 

assumptions we can show that ~b is "almost twice differentiable". We prove it by 

applying Theorem 4.1 to the case q = 2. 

To fix f~(2)we set do=d/4 and require d I < d/4. Consequently, for any (x, Y) 

=(x, yl, y2)6f~ ~2) we have d~±yl±y2 > d/4, and hence, by Theorem 6.4, 

4 1~2 (Y)~,(x) l <= --d-Ks, 
2 =< ~-Kslykl, 

(7.3) 162(Y)q~(x)l < 2 K s r , 2 ,  

where we put r12 =ra in  {lyll,  l y2I}. Using (7.1) as well as (5.4-5.6), we 

deduce directly from (4.3) the estimate 

(7.4) If(2)(x, Y) [ < K 6/d 2, (x, Y) e~f~ (2). 

By (7.3) we can also write 

2K5 
(7.5) I, (x,Y) BI 

Taking dt = d]C7 (which entails (4.17)) and using (7.4--7.5)and (5.11 = 5.17), it 

is straightforward to show that the comparison function 
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rlr2 2dl 
u(r O, r l, r2) = K 7 ~ log rl  + r2 

rlr~ ( rl p + , ' ~  
+ K8 -dr 1 ~d~ ! 

ro 2 
(7.6) + 16K~ d2 

satisfies (4.18-4.19). Theorem 4.1 (with x = 0 in (4.20) thus yields 

THEOREM 7.1. I f  Ldp = f in f~, where f is bounded and the principal coef- 

ficients of L are Hi~lder-continuous, then 

2C 7 - I dx dx 
(7.7) dx2 l~2(Yx'Y2)~(x) l i ~ i ' ~  = < KTl°g ly~l+ly2l +Ks, ly ~ I,ly21<~7= . 

Under the conditions of Theorem 7.1, (7.7) is essentially the best possible estimate. 

Stronger results require stronger assumptions. We shall assume, in the rest of  

this section and in Section 8, that f (x)  as well as the coefficients of L are all H/51der- 

continuous, with exponent 0 < oc < 1. More precisely, we assume that K~, Hi ,  

C4, C8 and C9, and hence also all the other bounds C a, Ka and H~ introduced 

in Section 5, are finite. Again fl is some auxiliary exponent, satisfying 0 < fl < ~t. 

Again we put d o = d/4 and require dl < d~ 4. By (7.1-7.2), (5.8-5.10) and (4.3) 

there now follows 

(7.8) d2+'lf<2)(x, r)l -< H2r12 *, (x, y)~f~(2). 

Taking dl = d/Cxo and noting (7.8), (7.5) and (5.1t = 5.17), it is a matter of  straight 

computation to show that the function 

u(r o, rl,r2) = H a - - ~  _1 4dtP ] 

ro2rtr2 2dl 
+ K 9 ~ l o g r l  + r2 

+ 256K~ r°4 

satisfies (4.18-4.19). Hence, Theorems 4.1 (with x = 0 in (4.20)) and 6.4 give 

THEOaEM 7.2. 

continuous, then 

I f  Lc~ = f i n  ~, where f and all the coe~cients of L are Hiflder- 

J~2(Yl'Y2)~b(x)l < Ha, ly l ] , l  y2] H l d ~ .  (7.9) 
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8. Corollaries: Interior Sehaufler estimates. Taking up the case q = 3, we set 

do = d/5, and require dl <= d/5. As a result, for any (x, Y) = ( x , f , y 2 , y  3) ~ ( 3 )  

we have dx±yl+y,±y~ > d/5, and therefore, by Theorem 7.2, 

25 
I i, a(Y)~,/x) I =< ~ H a  

< 25 Haly l, 
= 4d 2 

I~,~.,(y)4,(x) I <= 25 9d 2 Ha lYkl " lY'I '  

and by Theorem 6.4 
5 I~a(Y)~,(x) I < ~Ks, 

I~(y)~(x) 1 =< 5 Ks ly~l. 

Using these relations together with (5.7-5.10), we conclude from (4.3) that 

(8.1) d2+'lf (a)(x' Y)I ---- H,r,2], (x, ramta (s). 
By Theorem 7.2 we can also write 

25H a 
(8.2) {aa(Y)~(x) I ___ 9-drdTly'l . lyal.lY2l, (x,Y)~n, (a'. 

We now select dl = d[C12, which satisfies (4.17). Using (8.1-8.2) and also 

(5.11-5.18), it is straightforward (although cumbersome, if constants are to be 

examined in detail) to check( s ) that the comparison-function 

rxr2rs , # r2P + rat) -"- ' ) /# u(ro, rt, r2, ra) = Hs ~ ~,rl + 

rlr2ra ( r l # + r 2 B + r ~ )  
+ H 6 ~  1 - 6d1# 

/ '0 4 
+ 625K'[' d4 

,o2[  r:,(, 
+ Kt°  "-~ t~l ~a d2 O g r k +  rl 

C + r:~l log2" ~ ] j  

satisfies (4.18-4.19). Using (4.20) with y = O, and also (7.9), we get 

(5) In addition to basic inequalities, a simple instance of the Muirhead's inequality (see 
[8], page 44) is employed. 
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THEOREM 8.1. I f  L~  = f in f~, where f and the coefficients of L are all 

Hiilder-continuous, then 

d~, T M  I ~ ( y l ' y 2 ' Y 3 ) 4 ' ( x ) I  < a ~ +  "o, 1:1 ly l I:1 
- l y ~ l l y 2 ] l y 3 1 .  = , , _ 

Noticing (5.2) it is clear that this theorem is equivalent to the well-known 

interior Schauder estimates. 

9. Equations in two variables and bounded coefficients. In the case n = 2, and 

for any given two-dimensional vector Y=(Yt, Y2), the operator (2.I) can be re- 

written in the form 

2 2 

(9.1/ Ldp(x) = E (~,o~j + vy,j)~,j(x) + % a , ( x ) ~ ( x ) -  a(x)c/,(x),  
i , j = l  i = l  

x = (x l ,Xz)  ~ f~, 

where Ytl = yiyj/ lyl  2 and consequently ~1, ~2 and ~ are functions that depend 

also on y: 

~ = ~ ( x , y ) ,  ~ = ~ (x ,y ) .  

By (2.2) these functions must satisfy 

(9.2) ~t 2 + ~ 2  2 ->_ v and ~ > - v .  

We now introduce four other functions, O+(x,y), O_(x,y), O+(x, y) and 

O-(x ,y) ,  defined on ~(1) (see (4.7-4.8)), such that 

(9.3) O+(x, y) [y2~l(x + y, y) - yt~2(x + y, y)] = 

(9.4) 

O_(x, y)[y2oq(x - y, y) -- ylo:2(x - y, y)],  

m a x { l O + ( x , y )  I, I o _ ( x , y ) l }  = 1 ,  

I 0+(x,y) l = max {I O+(x,y) l, n(x, y)},  0+/0 + -> o,  

and 

10-(x,y)l = max{IO-(x,y)l, ~(x,y)} ,  0_ /0 -  > 0, 

where 0 < ~/(x, y) < 1 is a certain continuous function. We further define 12 

more functions as follows 

~ = ~ ( x , y )  = O+(x,y) • cq(x + y , y ) ,  (i = 1,2) 

a~ = a~(x,y)  = [O~(x,y)]2"a,(x + y),  (i = 1,2) 
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v.+. = v ± ( x ,  y )  = JOe(x ,  y)32. V(X 4- y, y),  

~k = ~b(X, y) = ½[¢(X + y) - tk(x - y)] ,  

and 

( ( ~ -  ~:)[Yl/Yt i f [Yl[ > [Y2[ 

if lY, I< lY,1. 
,( 

Note that, no matter which of the two alternatives in the last definition is selected, 

we must have, by (9.3), 

(9.5) a + - cq- = ]~-[fl + r h , (i = 1, 2), 

where we adopt the rule to denote by r/k = r/k(X, y) any function such that [ r/k(X, y) [ 

can be made arbitrarily small (that is, smaller than any pre-assigned positive 

function in ((tit1))) by letting r l (x , y )  be small enough. 

The following identity is readily verified by writing its both sides explictly in 

terms of ~, ~bi, ~b u. 

(9.6) ½[O+2Lc~(x + y )  - O-2Ldp(x  - y)] = lJ, x)@(x, y )  - 6[02a]  • # ( y ) ¢ ( x ) ,  

where 

L 0) _- L~ I) + L~ ) + Lea I) , 

1 2 / - 02 02 
L~ t) = ~. ida__1 ,(a + +aT)Ca; + a j ) ~  + (a + - a T ) ( ~ -  a 7) #y~Oy~ 

- 02 - 02 I 
+ (at - a?)Ca~ + aj ) ~  + (a~ + a: ) (a~-  aj )aTayj,  ' 

= _ ~ (v++v-)Y u + 1212) 4 ~, =~ 

+ (v + - v - ) y  u + , 

2 { 63 a}_#EO2a], = ,x,  .[02 ,1 + @2a, 1 

t~[02a] = ½rO+2a(x+ y)-  O-2a(x, - y ) ] , / l  [02a] = ½[O+2a(x + y) + O-2a (x - y ) ] .  

It is clear that ~ t  t) is semi-elliptic. Also, it follows from (9.2) that v + >-- ~/2v 

and as a result Lt21) is locally uniformly elliptic. Hence/.jl)  itself is locally uni- 

formly elliptic. Furthermore, we have, for any F e C2((0, dr)), 
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v + + v- ~, y~j y~F # + (cS~j - Ylj) 
~ ) F ( I  Y I) = 4 ,d =1 

(9.7) 
_ v+ + v -  e . ( l Y l )  ' 

4 

and similarly, by (9.5), 

( (9.s) L~'e(lyl) = r(I  yl) + ~Y(Iy 1) + ~ ,r( ly  ]). 

We shall use these operators to prove 

TI-IEOREM 9.1. I f  d~ satisfies the equation 

Ld~(x) = f (x ) ,  x ~ a ,  

where the coefficients of L, as well as f and q~ itself, are all bounded, namely, 

[~ , (x)]  ~ _<- C l ,  ~(x) __< c l ,  

d,. la,(x) l <= c 2 ,  o <= dx 2 " a(x) <= Ca, 

I~(x)l -<_ r ,  and dx 2" If(x)l =< K~, 

then ~p is Lipschitz continuous and satisfies 

(9.9) dx" [6(y)dp(x)[ < CO)K l + Ct2)K2 x ÷_ y~[~,  
l y l  = 

where 

[I ] C* = rain ' 18C2 ' 

18 
C (1)= C *-1 + 3 6 C * ( 5 C I + 4 C z + C a )  + 7 C 2 ,  

v 

ctZ) = 3 6 C . .  
V 

Proof. We shall estimate ~k(x, y) = ~(y)~b(x) by comparing it to the function 

K~lxl, K K1 ff(x,y) = To ~ + ~(d ,  lY[-  lYl ~) + -d~-Iyl, (x,y) ~n") 

where d is the distance from 0 (the origin of E2) to 0f~ and where do and d I are 

the usual parameters of  fl(~), for which we stipulate, as in Section 6, that 

d 
(9.10) dl _-< do = ~. 
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K is a constant, as yet at our disposal. It is clear from (4.9) that 

~}(x,y) > I~(x,y)[, (x,y)~a~ ") 

Therefore, in order to use the comparison principle to show that ~ > [ ~[ through- 

out ~qtt), it is sufficient to prove that 

lJ, l)~}(x,y) < -]/31)~b(x,y)] , (x,y)~f~ O). 

By (9.6), (9.4) and (9.10) it is in fact enough to show that 

9 
(9.11) IJ l )~(x ,y)  < - -~[CaK1 + K2], (x,y)~f~ (t). 

Substituting the above explicit expression for ff and applying (9.7-9.8), we find 

K 2 v+ K1 { 2 z~'~ = f ~ ( ~  + + ~-) + ~ K  + ~ ,~, (~? + ~-)2 + 

v + + v- } + L~')~ 

Therefore, to satisfy (9.11) it is sufficient to have 

___K_K(fl2 v+ 9 5Kt C 2d 2 + + v - ) _ _ _ _ ~ [ C 3 K x + K 2 J + n s K + ~  

+ ~ do K1 + i ~ dl + 

Or, in view of (9.2), (9.4) and (9.10), it is sufficient that 

v - 9C~_ -~- + tl 6 K > 90Ct + 72C2 +18C3 + 9C2 K I + 1 8 K  2. 

This last inequality is satisfied by taking 

d 1 = C*d (9.12) 

and 

(9.13) 
36 

K = 18(10C1 + 8C 2 + 2C a + C2/C*)K 1 -t- --~-K 2 + r/*, 
v 

where ~/* is a positive constant that can be made arbitrarily small by letting r/(x, y) 

be small enough. 

Thus, with K and dl defined as in (9.12-9.13) we have [•(x,y) I < ~(x , y )  

throughout fi tl). In particular for x = 0 we get 
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+ "IY[, (lY[---< 

or, by (9.12), 

d "  [¢5(Y)¢(0) I < C*K + C * - 1 K  1 , 
l y l  = (lyl c'd). 

This holds for  any positive ~/* and therefore also for r/* = 0.  For  [y[  > C*d 

the last inequality is self-evident. This inequality is thus equivalent to (9.9). Q.E.D. 
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